Nitric oxide sensitivity of the aconitases.
نویسندگان
چکیده
Aconitases are important cellular targets of nitric oxide (NO.) toxicity, and NO.-derived species, rather than NO. per se, have been proposed to mediate their inactivation. NO.-mediated inactivation of the Escherichia coli aconitase and the porcine mitochondrial aconitase was investigated. In E. coli, aconitase activity decreased by approximately 70% during a 2-h exposure to an atmosphere containing 120 ppm NO. in N2. The NO.-inactivated aconitase reactivated poorly in E. coli under anaerobic or aerobic conditions. Elevated superoxide dismutase activity did not affect the aerobic inactivation of aconitase by NO., thus indicating a limited role of the NO.- and superoxide-derived species peroxynitrite. Glutathione-deficient and glutathione-containing E. coli were comparably sensitive to NO.-mediated aconitase inactivation, thus excluding the participation of S-nitrosoglutathione or more oxidizing NO.-derived species. NO. progressively decreased aconitase activity in extracts in the presence of substrates, and inactivation was greatest at an acidic pH with cis-aconitate. The porcine mitochondrial aconitase was sensitive to NO. when exposed at pH 6.5, but not at pH 7.5, and irreversible inactivation occurred during catalysis. The requirement of an acidic pH or substrates for sensitivity may explain the reported resistance of aconitases to NO. in vitro (Castro, L., Rodriguez, M., and Radi, R. (1994) J. Biol. Chem. 269, 29409-29415; Hausladen, A., and Fridovich, I. (1994) J. Biol. Chem. 269, 29405-29408). An S-nitrosation of the aconitase [4Fe-4S] center catalyzed by the solvent-exposed electron withdrawing iron atom (Fea) is proposed.
منابع مشابه
Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not.
The Escherichia coli and recombinant human cytosolic aconitases are inactivated by O2-., with a rate constant of approximately 3 x 10(7) M-1 s-1; the corresponding value for the porcine mitochondrial aconitase is approximately 0.8 x 10(7) M-1 s-1. Nitric oxide, which is reported to inactivate aconitase, did not do so at a perceptible rate, while incubation with peroxynitrite led to a rapid loss...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملThe Role of Nitric Oxide Donors in Wound Healing in Diabetes Mellitus
Introduction: Diabetic foot ulcer is a serious complication of diabetes mellitus; it consists of lesions in the deep tissues associated with neurological disorders and peripheral vascular disease in the lower limbs. Delayed wound healing in diabetes leads to long-term hospitalization and even amputation of distal organs. Diabetes mellitus is associated with decreased nitric oxide bioavailabilit...
متن کاملP-90: The Effect of Nitric Oxide on Mouse Oocyte in Vitro Maturation in Two and Three Dimensional Conditions
Background: In vitro culture of ovarian follicles may preserve fertility in women with premature ovarian failure due to cancer .It seems that creation a condition that could maintain cellular communications and supports growth of follicles to produce mature oocytes appear to be essential. Nitric oxide (NO) has been recently shown to act with a dual action in mouse oocyte meiotic maturation depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 40 شماره
صفحات -
تاریخ انتشار 1997